In this lecture, we introduce basic concepts from probability theory that will be useful as we move toward input modeling for Discrete Event System simulation modeling. Our introduction starts with a brief acknowledgment of measure theory and then a definition of random variables, sample spaces, events, and probability measures. We cover the discrete random variable, the continuous random variable, and the related probability mass and probability density functions. We pivot to discuss cumulative distribution functions and several applications of moments (expected value, mean, variance, standard deviation, etc.). Throughout the lecture, we use the analogy of probability as a kind of weight of a set of mutually exclusive outcomes.
Archived lectures from undergraduate course on stochastic simulation given at Arizona State University by Ted Pavlic
Thursday, September 17, 2020
Subscribe to:
Post Comments (Atom)
Popular Posts
-
In this lecture, we close out our review of DES fundamentals and hand simulation. After going through a hand-simulation example one last tim...
-
This lecture covers Variance Reduction Techniques (VRT) for stochastic simulation, covering: Common Random Numbers (CRNs), Control Variates ...
-
In this lecture, we review basic probability space concepts from the previous lecture. We then go on to discuss the common probabilistic mod...
-
In this lecture, we review topics from the first half of the semester that will be tested over in the upcoming midterm. Most of the class in...
-
In this lecture, we introduce the detailed process of input modeling. Input models are probabilistic models that introduce variation in simu...
-
In this lecture, we review pseudo-random number generation and then introduce random-variate generation by way of inverse-transform sampling...
-
In this lecture, we introduce the three different simulation methodologies (agent-based modeling, system dynamics modeling, and discrete eve...
-
In this lecture, we (nearly) finish our coverage of Input Modeling, where the focus of this lecture is on parameter estimation and assessing...
-
In this lecture, we continue to discuss hypothesis testing -- introducing parametric, non-parametric, exact, and non-exact tests and reviewi...
-
In this lecture, we wrap up the course content in IEE 475. We first do a quick overview of the four variance reduction techniques (VRT's...
No comments:
Post a Comment