In this lecture, we briefly introduce System Dynamics Modeling (SDM) and Agent-Based/Individual-Based Modeling (ABM/IBM) as the two ends of the simulation modeling spectrum (from low resolution to high resolution). The introduction of ABM describes applications in life sciences, social sciences, and engineering (Multi-Agent Systems, MAS)/operations research. NetLogo is introduced, and it is used to present examples of running ABM's as well as the code behind them. At the end of the ABM/NetLogo introduction, comments about the previous lab on Monte Carlo simulation are given. These comments focus on interval estimation (which is right 95% of the time, as opposed to point estimation that is right 0% of the time) and the role of non-trivial distributions of random variables (as opposed to just their means).
Archived lectures from undergraduate course on stochastic simulation given at Arizona State University by Ted Pavlic
Tuesday, September 13, 2022
Lecture C2 (2022-09-13): Beyond DES Simulation – SDM, ABM, and NetLogo (and pre-lab discussion for Lab 4 and post-lab discussion for Lab 3)
Labels:
podcast
Location:
Tempe, AZ, USA
Subscribe to:
Post Comments (Atom)
Popular Posts
-
This lecture covers Variance Reduction Techniques (VRT) for stochastic simulation, covering: Common Random Numbers (CRNs), Control Variates ...
-
In this lecture, we introduce the detailed process of input modeling. Input models are probabilistic models that introduce variation in simu...
-
In this lecture, we review basic probability space concepts from the previous lecture. We then go on to discuss the common probabilistic mod...
-
In this lecture, we close out our review of DES fundamentals and hand simulation. After going through a hand-simulation example one last tim...
-
In this lecture, we review pseudo-random number generation and then introduce random-variate generation by way of inverse-transform sampling...
-
In this lecture, we introduce the three different simulation methodologies (agent-based modeling, system dynamics modeling, and discrete eve...
-
In this lecture, we review topics from the first half of the semester that will be tested over in the upcoming midterm. Most of the class in...
-
In this lecture, we (nearly) finish our coverage of Input Modeling, where the focus of this lecture is on parameter estimation and assessing...
-
In this lecture, we continue to discuss hypothesis testing -- introducing parametric, non-parametric, exact, and non-exact tests and reviewi...
-
In this lecture, we wrap up the course content in IEE 475. We first do a quick overview of the four variance reduction techniques (VRT's...
No comments:
Post a Comment