In this lecture, we review statistical fundamentals – such as the origins of the t-test, the meaning of type-I and type-II error (and alternative terminology for both, such as false positive rate and false negative rate) and the connection to statistical power (sensitivity). We review the Receiver Operating Characteristic (ROC) curve and give a qualitative description of where it gets its shape in a hypothesis test. We close with a validation example (from the previous lecture) where we use a power analysis on a one-sample t-test to help justify whether we have gathered enough data to trust that a simulation model is a good match for reality when it has a similar mean output performance to the real system.
Archived lectures from undergraduate course on stochastic simulation given at Arizona State University by Ted Pavlic
Friday, October 28, 2022
Lecture I (2022-10-27): Statistical Reflections [Halloween Themed]
Labels:
podcast
Location:
Tempe, AZ, USA
Subscribe to:
Post Comments (Atom)
Popular Posts
-
In this lecture, we close out our review of DES fundamentals and hand simulation. After going through a hand-simulation example one last tim...
-
This lecture covers Variance Reduction Techniques (VRT) for stochastic simulation, covering: Common Random Numbers (CRNs), Control Variates ...
-
In this lecture, we review basic probability space concepts from the previous lecture. We then go on to discuss the common probabilistic mod...
-
In this lecture, we review topics from the first half of the semester that will be tested over in the upcoming midterm. Most of the class in...
-
In this lecture, we introduce the detailed process of input modeling. Input models are probabilistic models that introduce variation in simu...
-
In this lecture, we review pseudo-random number generation and then introduce random-variate generation by way of inverse-transform sampling...
-
In this lecture, we introduce the three different simulation methodologies (agent-based modeling, system dynamics modeling, and discrete eve...
-
In this lecture, we (nearly) finish our coverage of Input Modeling, where the focus of this lecture is on parameter estimation and assessing...
-
In this lecture, we continue to discuss hypothesis testing -- introducing parametric, non-parametric, exact, and non-exact tests and reviewi...
-
In this lecture, we wrap up the course content in IEE 475. We first do a quick overview of the four variance reduction techniques (VRT's...
No comments:
Post a Comment