In this lecture, we start by reviewing approaches for absolute and relative performance estimation in stochastic simulation. This begins with a reminder of the use of confidence intervals for estimation of performance for a single simulation model. We then move to different ways to use confidence intervals on mean DIFFERENCES to compare two different simulation models. We then move to the ranking and selection problem for three or more different simulation models, which allows us to talk about analysis of variance (ANOVA) and post hoc tests (like the Tukey HSD or Fisher's LSD). After that review, we move on to introducing variance reduction techniques (VRTs) which reduce the size of confidence intervals by experimentally controlling/accounting for alternative sources of variance (and thus reducing the observed variance in response variables). We discuss Common Random Numbers (CRNs), which use a paired/blocked design to reduce the variance caused by different random-number streams. We start to discuss control variates (CVs), but that discussion will be picked up at the start of the next lecture.
Archived lectures from undergraduate course on stochastic simulation given at Arizona State University by Ted Pavlic
Wednesday, November 16, 2022
Lecture K1 (2022-11-15): Variance Reduction Techniques, Part 1 (CRNs and Control Variates)
Labels:
podcast
Location:
Tempe, AZ, USA
Subscribe to:
Post Comments (Atom)
Popular Posts
-
In this lecture, we close out our review of DES fundamentals and hand simulation. After going through a hand-simulation example one last tim...
-
This lecture covers Variance Reduction Techniques (VRT) for stochastic simulation, covering: Common Random Numbers (CRNs), Control Variates ...
-
In this lecture, we review basic probability space concepts from the previous lecture. We then go on to discuss the common probabilistic mod...
-
In this lecture, we review topics from the first half of the semester that will be tested over in the upcoming midterm. Most of the class in...
-
In this lecture, we introduce the detailed process of input modeling. Input models are probabilistic models that introduce variation in simu...
-
In this lecture, we review pseudo-random number generation and then introduce random-variate generation by way of inverse-transform sampling...
-
In this lecture, we introduce the three different simulation methodologies (agent-based modeling, system dynamics modeling, and discrete eve...
-
In this lecture, we (nearly) finish our coverage of Input Modeling, where the focus of this lecture is on parameter estimation and assessing...
-
In this lecture, we continue to discuss hypothesis testing -- introducing parametric, non-parametric, exact, and non-exact tests and reviewi...
-
In this lecture, we wrap up the course content in IEE 475. We first do a quick overview of the four variance reduction techniques (VRT's...
No comments:
Post a Comment