In this lecture, we continue our discussion of input modeling in depth. We start with a more detailed example of how data collection can guide the choice of the structural features of a system. We then move to the point in the process when the structure of the model is set but the input models have to be chosen based on collected data. We cover methods for generating histograms and matching those histograms to common distributions (both discrete and continuous). We stop just before discussing Q-Q plots and P-P plots, which we will pick up next time along with discussing how to parameterize these chosen distributions.
Archived lectures from undergraduate course on stochastic simulation given at Arizona State University by Ted Pavlic
Tuesday, October 19, 2021
Subscribe to:
Post Comments (Atom)
Popular Posts
-
In this lecture, we close out our review of DES fundamentals and hand simulation. After going through a hand-simulation example one last tim...
-
This lecture covers Variance Reduction Techniques (VRT) for stochastic simulation, covering: Common Random Numbers (CRNs), Control Variates ...
-
In this lecture, we review basic probability space concepts from the previous lecture. We then go on to discuss the common probabilistic mod...
-
In this lecture, we review topics from the first half of the semester that will be tested over in the upcoming midterm. Most of the class in...
-
In this lecture, we introduce the detailed process of input modeling. Input models are probabilistic models that introduce variation in simu...
-
In this lecture, we review pseudo-random number generation and then introduce random-variate generation by way of inverse-transform sampling...
-
In this lecture, we introduce the three different simulation methodologies (agent-based modeling, system dynamics modeling, and discrete eve...
-
In this lecture, we (nearly) finish our coverage of Input Modeling, where the focus of this lecture is on parameter estimation and assessing...
-
In this lecture, we continue to discuss hypothesis testing -- introducing parametric, non-parametric, exact, and non-exact tests and reviewi...
-
In this lecture, we wrap up the course content in IEE 475. We first do a quick overview of the four variance reduction techniques (VRT's...
No comments:
Post a Comment